# ADI KAVI NANNIAH UNIVERSITY SEMESTER END EXAMINATIONS

M.Sc.Mathematics
IV-SEMESTER
M401: Measure Theory
[W.E.F.2016 A.B.]
(Model Question Paper)

Time: 3 Hours Max. Marks: 75

Answer ALL questions. Each question carries 15 marks

1. Define a measurable space, give an example and verify that it is a measurable space. Prove that, if  $A \subset B \in \mathcal{B}$ , then  $\mu(A) \leq \mu(B)$  where  $\mu$  is the measure on X.

**Marks**:  $5 \times 15 = 75$ 

(OR)

- 2. State and prove Fatou's Lemma
- 3. State and prove Lebesgue Convergence Theorem

(OR)

- 4. State and prove Hahn Decomposition Theorem
- 5. State and prove Radon Nikodym Theorem.

(OR)

- 6. Prove that (a)  $\mathcal{B}$  of  $\mu^*$  measurable sets is a  $\sigma$  algebra. and (b)  $\overline{\mu}$  is  $\mu^*$  restricted to  $\mathcal{B}$ , then  $\overline{\mu}$  is a complete measure on  $\mathcal{B}$
- 7. State and prove State Caratheodory theorem

(OR)

- 8. State and prove Riesz representation theorem.
- 9. Answer any **THREE** questions of the following
  - a. Define the signed measure, positive set, and distinguish between the null set and a set of measure zero through an example
  - b. Prove that the countable union of positive sets is positive
  - c. Define Caratheodory outer measure and Haussdorff measure
  - d. State Fubini theorem, product measure and define cross section of a set E.

DEAN DEAN INTERNITE ANTAIRS AN

### ADIKAVI NANNAYA UNIVERSITY SEMISTER END EXAMINATIONS

M.Sc.Mathematics IV- SEMESTER

### M402: NUMERICAL ANALYSIS

[W.E.F.2016 A.B.] (Model Question Paper)

Time: 3 Hours

Max. Marks: 75

Answer ALLquestions. Each question carries 15 marks. Marks: 5 X 15=75

1) Find a root of the equation  $\cos x - xe^x = 0$  by using regula-falsi method

(OR)

- 2) By using Muller method find the smallest positive root of the equation  $f(x) \equiv x^3 5x + 1 = 0$ .
- 3) Find the inverse of the matrix

2 1 1 -2  
4 0 2 1 Using partition method. Hence, solve the system of equations 
$$AX = b$$
, where  $b = \begin{bmatrix} -10, 8, 7, -5 \end{bmatrix}^T$ .

(OR)

4) Solve the system of equations

$$2x_1 - x_2 = 7$$
  
 $-x_1 + 2x_2 - x_3 = 1$  Using Gauss – Seidel method.  
 $-x_2 + 2x_3 = 1$ 

5) Derive Bessel formula and find the value of g(0.25) given that

| X    | • | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| g(x) | : | 9.9833 | 4.9667 | 3.2836 | 2.4339 | 1.9177 |

(OR)

6) Obtain the piecewise quadratic interpolating polynomials for the function f(x) defined by the data:

$$x$$
 : -3 -2 -1 1 3 6 7  $f(x)$  : 369 222 171 165 207 990 1779

Find and approximate value of f(-2.5) and f(6.5)



- 7) Evaluate the integral  $I = \int_1^2 \frac{2x dx}{1+x^4}$ , using the Gauss Legendre 1-point, 2-point and 3-point quadrature rules. Compare with the exact solution  $I = \tan^{-1}(4) (\pi/4)$ .

  (OR)
- 8) Solve the initial value problem  $u' = -2tu^2$ , u(0) = 1 with h = 0.2 on the interval [0, 0.4]. Use the fourth order classical Runge – Kutta method. Compare with the exact solution.
- 9) Answer any <u>THREE</u> of the following.
  - a) Find the root of the equation  $f(x) \equiv x^3 5x + 1 = 0$
  - b) Perform two iterations of the Chebyshev method to find an approximate value of 1/7. Take the initial approximation as  $x_0 = 0.1$
  - c) Solve the equations  $x_1 + x_2 + x_3 = 6$ ,  $3x_1 + 3x_2 + 4x_3 = 20$ ,  $2x_1 + x_2 + 3x_3 = 13$  using the Gauss elimination method.
  - d) Derive the formula for the first derivative of y = f(x) of  $O(h^2)$  using central difference approximations.
  - e) Find singlestep method for the differential equation y' = f(t, y), which produce exact results for  $y(t) = a + be^{-t}$

\*\*\*

# ADIKAVI NANNAYA UNIVERSITY

# SEMESTER END EXAMINATIONS

M.Sc. MATHEMATICS IV SEMESTER M(403) GRAPH THEORY

(w.e.f. 2016 A.B.) MODEL QUESTION PAPER

Time: 3Hours

Answer ALL Questions and Each Question Carries 15 Marks

Max. Marks: 75

Marks:  $5 \times 15 = 75$ 

- 1. (a) Prove that the number of vertices of odd degree in a graph is always even
  - (b) Explain Konigsberg Bridge problem

(OR)

- 2. (a) Prove the following statement: In a connected graph G, any minimal set of edges containing at least one branch of every spanning tree of G is a cut set
  - (b) Show that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets
- 3. Prove that "The Complete graph of five vertices is non-planar
- 4. Obtain the Dual of the following graph



- 5.(a) If A(G) is an incidence matrix of a connected graph G with a vertices, then show that the rank of A(G) is n-1
  - (b) If B is a circuit matrix of connected graph G with e edges and n-vertices then prove that Rank of B = e-n+1(OR)
- 6. Let A and B be the respective circuit matrix and the incidence matrix of a self loop free graph whose columns are arranged using the same order of edges. Then every row of B is orthogonal to every row of A. i.e.,  $A.B^T = B A^T = 0 \pmod{2}$ . Verify the result for the following graph



1

- 7. Show that the vertices of every planar graph can be properly colored with five colors (OR)
- 8. State and prove Max-flow-min -cut theorem
- 9. Answer any THREE of the following
  - (a) Define Euler and Hamiltonian graph and give one example for each.
  - (b) Define Tree, Spanning Tree and give one example for each.
  - (c) Show that Kuratowski second graph is non planar
  - (d) Show that every tree with two or more vertices is 2-chromatic.
  - (e) Define fundamental circuit matrix

## ADIKAVI NANNAYA UNIVERSITY

#### SEMESTER END EXAMINATIONS

# M.Sc. Mathematics IV-SEMESTER

### M404-LINEAR PROGRAMMING

(W.E.F.2016A.B)

### Model Question Paper

#### Time:3 hrs

Answer ALL questions. Each question carries 15 Marks.

Max.Mks:75

Marks:  $5 \times 15 = 75$ 

- 1) Solve the following LP problem graphically Maximize  $z = 8000x_1 + 7000x_2$ , Subject to  $3x_1 + x_2 \le 66$ ,  $x_1 + x_2 \le 45$ ,  $x_1 \le 20$ ,  $x_2 \le 40$  and  $x_1$ ,  $x_2 \ge 0$  (OR)
- 2) Solve the LP problem: Maximize  $z = 3x_1 + 2x_2 + 5x_3$ , Subject to the constraints  $x_1 + 2x_2 + x_3 \le 430$ ,  $3x_1 + 2x_3 \le 460$ ,  $x_1 + 4x_2 \le 420$  and  $x_1, x_2, x_3 \ge 0$
- 3) Use Big-M method to solve the problem Maximize  $z = 6x_1 + 4x_2$  Subject to the constraints  $2x_1 + 3x_2 \le 30$ ,  $3x_1 + 2x_3 \le 24$ ,  $x_1 + x_2 \ge 3$  and  $x_1, x_2 \ge 0$ . Is the solution unique? If not, give two different solutions. (OR)
- 4) Apply the principle of duality to solve the LP problem Maximize  $z = 3x_1 2x_2$ Subject to the constraints  $x_1 + x_2 \le 5$ ,  $x_1 \le 4$ ,  $1 \le x_2 \le 6$  and  $x_1$ ,  $x_2 \ge 0$ .
- 5) A car hire company has one car at each of five depots a,b,c,d and e. A customer requires a car in each town, namely A,B,C,D and E. Distance (in kms) between depots (origins) and towns (destinations) are given in the following distance matrix:

|   | a   | b   | С   | d   | е   |
|---|-----|-----|-----|-----|-----|
| A | 160 | 130 | 175 | 190 | 200 |
| В | 135 | 120 | 130 | 160 | 175 |
| С | 140 | 110 | 155 | 170 | 185 |
| D | 50  | 50  | 80  | 80  | 110 |
| Ε | 55  | 35  | 70  | 80  | 105 |

How should cars be assigned so as to minimize the distance travelled.

(OR)

6) Solve the travelling -salesman problem given by the following data  $C_{12} = 20$ ,  $C_{13} = 4$ ,  $C_{14} = 10$ ,  $C_{23} = 5$ ,  $C_{34} = 6$ ,  $C_{25} = 10$ ,  $C_{35} = 6$ ,  $C_{45} = 20$ , where  $C_{ij} = C_{ji}$  and there is no route between cities i and j if the value for  $C_{ij}$  is not shown.

7) A Steel company has three open hearth furnaces and five rolling mills. Transportation cost (Rupees per quintal) for shipping steel from furnaces to rolling are shown in the following table.

| Mills<br>Furnaces         | M <sub>1</sub> | M <sub>2</sub> | M <sub>3</sub> | M <sub>4</sub> | M <sub>5</sub> | Capacities (in quintals) |
|---------------------------|----------------|----------------|----------------|----------------|----------------|--------------------------|
| $F_1$                     | 4              | 2              | 3              | 2              | 6              | 8                        |
| F <sub>2</sub>            | 5              | 4              | 5              | 2              | 1              | 12                       |
| F <sub>3</sub>            | 6              | 5 .            | 4              | 7              | 3              | 14                       |
| Requirement (in quintals) | 4              | 4              | 6              | 8              | 8              |                          |

What is the optimal shipping schedule?

(OR)

8) Solve the following transportation problem.

Cost-matrix

| To<br>From |    |    |    | Available |  |
|------------|----|----|----|-----------|--|
|            | 0  | 2  | 0  | 70        |  |
|            | 10 | 4  | 0  | 30        |  |
|            | 0  | 2  | 4  | 50        |  |
| Required   | 70 | 50 | 30 |           |  |

- 9) Answer any THREE of the following:
  - a) What do you mean by LPP? What are its limitations?
  - b) Write the steps used in the Simplex method.
  - c) Write the Mathematical formulation of Assignment problem
  - d) Write the dual of the following LP problem Min.  $Z = 3x_1 2x_2 + 4x_3$  Subject to the constraints:

$$3x_1 + 5x_2 + 4x_3 \ge 7$$
,  $6x_1 + x_2 + 3x_3 \ge 4$ ,  $7x_1 - 2x_2 - x_3 \le 10$ , and  $x_1, x_2 \ge 0$ 

e) What is degeneracy problem in transportation Problems. What is its cause? How it can be Overcome.

\*\*\*\*\*\*

Dr. T. HYMAY ATHI Dr. T. HYMAY ATHI Convener- C. B. O. S. metics University Appled Mathematics & Mathematics Appled Mathematics & Mathematics Appled Mathematics & Mathematics Adikani Narnayaram. 533 296 Rajamahendrayaram.

## ADIKAVI NANNAYA UNIVERSITY

### M.Sc. Degree Examinations Mathematics IV-Semester

## Paper - 405. :DISCRETE DYNAMICAL SYSTEMS

(W.E.F. 2016 Admitted Batch)

(Model Question Paper)

Time: 3 Hours

Max. Marks: 75

## Answer ALL questions. Each question carries 15 marks

 $(5 \times 15 = 75)$ 

- (1) (a) Define fixed point, periodic point, attracting and repelling fixed points.
  - (b) Let f be a C' function and p be a fixed point of f such that |f'(p)| < 1. Show that there exists a neighborhood of p which is contained in  $W^s(p)$ .

(OR)

- (2) Let  $f: \mathbb{R} \to \mathbb{R}$  be a continuous function having a periodic point of period three. show that f has periodic points of all periods.
- (3) (a) Define the Shift Map and show that the Shift map is continuous, it has  $2^n$  periodic points of period n and there is an element with dense orbit
  - (b) Define Bifurcation, Saddle-node bifurcation, Pitch-fork bifurcation

(OR)

- (4) (a) Let  $f: X \to X$  be topologically transitive and suppose that the periodic points of f are dense in X. If X is infinite then f exhibits sensitive dependence on initial conditions
  - (b) Explain Period doubling bifurcation with an example
- (5) Let D and E be metric spaces,  $f:D\to D, g:E\to E,$  and  $\tau:D\to E$  be a topological conjugacy of f and g. Then, (i) $\tau^{-1}: E \to D$  is a topological conjugacy, (ii)  $\tau \circ f^n = g^n \circ \tau$  for all natural numbers n, (iii) f is topologically transitive on D if and only if g is topologically transitive on E.

(OR)

(6) Suppose p(x) is a polynomial If we allow cancellation of common factors in the expression of  $N_p(x) = x - \frac{p(x)}{P'(x)}$ , then  $N_p(x)$  is always defined at roots of p(x), a number is a fixed point of  $N_p(x)$  if and only if it is a root of the polynomial, and all fixed points of  $N_p(x)$  are attracting.

> Applied Mathematics & Mathematics Adjkavi Natinaha Philifolegip Rajamahendravaram-533 296

- (7) (a) Show that all complex quadratic polynomials are topologically conjugate to a polynomial of the form  $q_c(z) = z^2 + c$ .
  - (b) Prove that the orbit of a complex number under iteration of a complex quadratic polynomial is either bounded or the number is in the stable set of infinity.

(OR)

- (8) Let  $f(z) = e^{\theta i}z$  and  $z_0$  is a non zero complex number. Show that (a)  $z_0$  is a periodic point of f if  $\theta$  is a rational multiple of  $\pi$ , (b) if  $\theta$  is not a rational multiple of  $\pi$  then  $z_0$  is not a periodic point of f and its orbit is dense in the circle containing  $z_0$ .
- (9) Answer ant THREE of the following
  - (a) Define Discrete Dynamical system and give three examples .
  - (b) Explain the concept of Phase Portrait with the help of an example
  - (c) Define Sensitive dependance, Devany Chaos and give an example of a dynamical system which is choatic in the sense of Devany
  - (d) Define Topological Transitivity and show that the existence of a dense orbit implies topological transitivity
  - (e) Define topological conjugacy and prove that the periodicity and period of a periodic point is is preserved by topological conjugacy

Dr. T. Ly Why A V A THI Dr. Convenentation Matter States of the Matter States of the Matter States of the Matter States of the Matter of the M

# MODEL PAPER M.Sc. DEGREE EXAMINATION

Mathematics Fourth semester

#### (M405-27-OPERATOR THEORY

(Effective from the admitted Batch 2016-2017)

Time:3hours

Max.Marks:75

Note: Answer ONE question from each unit. Each question carries 15 marks

#### UNIT - I

- 1. a) State and Prove Banach Fixed Point Theorem.
- **b)** Suppose that  $v(t) = x(t) \mu \int_a \kappa(t, \tau) d\tau$  is continuous on [a, b] and the kernel k is continuous on the triangular region R in the  $t\tau$  plane given by  $a \le \tau \le t$ ,  $a \le t \le b$ , then v(t) equation has a unique solution.

(Or)

2. State and prove picard's Existence and Uniqueness theorem.

#### UNIT - II

- 3. a) Explain about Haar uniqueness theorem for best approximation.
  - **b**) Existence theorem for best approximation.

(0r)

- 4. a) Explain about Chebyshev Polynomials.
  - b) Explain about strict convexity

#### UNIT - III

5. State and Prove Spectral Mapping Theorem for polynomials.

(0r)

**6. a)** The Resolvent set  $\overset{*}{\rho}(T)$  of a bounded linear operator T on a complex Banach space X is open; hence the spectrum  $\sigma(T)$  is closed.

Dr. T. HYMAVATHI

Dr. T. HYMAVATHI

Convener-P.G. B. Mathematics

Applied Mathematics 8. Mathematics

Applied Mathematics

**b**) The Spectrum  $\sigma(T)$  of a bounded linear operator  $T: X \to X$  on a complex Banach space X is compact and lies in the disk given by

 $|\lambda| \le |T|$ 

UNIT – IV

**7**. Let  $T: X \to Y$  be a linear operator. If T is compact, so is its adjoint operator  $T^X: Y' \to X'$ ; here X and Y are normed spaces and X' and Y' the dual spaces of X and Y.

Or

- **8**. Let  $T: X \to X$  be a compact linear operator on a normed linear space X. then for every  $\lambda \neq 0$  the range of  $T_{\lambda} = T \lambda I$  is closed
- 9. Answer any three of the Following questions:
- a) Let  $T: X \to Y$  be a mapping on a complete metric space X=(X, d), and suppose that  $T^m$  is a contraction on X for some positive integer then T has a unique fixed point.
- b) Explain the definition of
- i) External point
- ii) Haar condition
- iii) Normed space
- iv) Hilbert space

- c) State and prove linear independence theorem
- **d)** If  $X \neq \{0\}$  is a complex Banach space and  $T \in B(X,X)$  then  $\sigma(T) \neq \phi$ .
- **e)** Let X and Y be Normed spaces and  $T: X \to Y$  be a compact linear operator. Suppose that  $(x_n)$  in X is weakly convergent, say,  $x_n \to x$ . Then  $(Tx_n)$  is strongly convergent in Y and has the limit y = Tx.

Dr. T. HYMAYATAI Dr. T. HYMAYATAI Conveneratics & Mathematics Applied Mathematics & Mothematics Applied Mathematics variation 533 296 Applied Mathematics variation 533 296 Rejection of the Mathematics variation of the production of the production

### ADI KAVI NANNIAH UNIVERSITY SEMESTER END EXAMINATIONS

#### M.Sc. Mathematics IV-SEMESTER

### M405.3: Advanced Differential Equations [W.E.F.2016 A.B.]

(Model Question Paper)

Time: 3 Hours

Max. Marks: 75

Answer ALL questions. Each question carries 15 marks

**Marks**:  $5 \times 15 = 75$ 

- Let y and z be linearly independent solutions of L(x) = (px')' + qx = 0 on (a,b) and let  $A = p(t)[y(t)z'(t) - y'(t)z(t)]. \text{ Define } G(t,s) = \begin{cases} -y(t)z(s)/A; t \le s \\ -y(s)z(t)/A; t > s \end{cases}$ Then x(t) is a solution of the BVP L(x) + f(t) = 0;  $a \le t \le b$ ,  $m_1x(a) + m_2x'(a) = 0$ ,  $m_3x(b)+m_4x'(b)=0$  if and only if  $x(t)=\int_a^b G(t,s)f(s)dx$
- The Green's function is given to be  $G(t,s) = \begin{cases} -y(t)z(s)/A & \text{if } s \leq s \\ -y(s)z(t)/A & \text{if } s \leq t \end{cases}$ , then prove that x(t) is a solution of the BVP,  $L(x)+f(t)=0, a \le t \le b$ and  $m_1 x(a) + m_2 x'(a) = 0;$  $m_3x(b)+m_4x'(b)=0$  if and only if  $x(t)=\int_a^b G(t,s)f(s)ds$
- 3. If a'(t) exists and is continuous, then x'' + a(t)x' + b(t)x = 0 with a(t), b(t) are real functions for  $t \ge 0$  is oscillatory if and only if, the equation x'' + c(t)x = 0 is oscillatory with  $c(t) = b(t) - \frac{a^2(t)}{4} - \frac{a'(t)}{2}$ .
- 4. State and prove Sturm's comparison theorem
- 5. If the matrix A of x' = Ax,  $0 \le t < \infty$  is having the characteristic roots with negative real parts, B(t) is an  $n \times n$  continuous matrix defined on  $[0,\infty)$  is such that  $\lim_{t \to \infty} |B(t)| = 0$ , then all solutions of  $y' = Ay + B(t)y, 0 \le t < \infty$  tend to zero as  $t \to \infty$

6. If the differential system  $x' = f(t,x), x(t_0) = x_0, 0 \le t_0 \le t < \infty$  ..... (\*) where  $x, x_0$  and f are elements of  $R^n$  satisfying (i) f(t,x) is continuous and satisfying Lipschitz's condition on the set  $\Delta = \{(t, x) : t \ge 0, ||x|| < a < \infty \}$ and (ii)  $f(t,0) = 0, t \ge 0$ , there exists a function V(t,x)satisfying  $V_t + V_x \cdot f \le g(t, V)$  and positive definite with the solution y = 0 of  $y' = g(t, y), y(t_0) = y_0 > 0$  is stable, then the solution x = 0 of (\*) is also stable.

> Applied Mathematics & Mathemetics Went Namaya Uli on Cavarain-9.2

7. Prove that the solutions of 'x'(t) = ax(t) + bx(t-r),  $0 \le t_0 \le t < \infty$  with a, b real, r > 0, and  $x(s) = \phi(s)$ ,  $t_0 - r \le x \le t_0$ , with  $\phi$  is real valued continuous function on  $[t_0 - r, t_0]$  ' is bounded if  $\int_{t_0 - r}^{t_0} \phi^2(s) ds \le \infty, a \le 0$  and  $|b| \le |a|$ 

(OR)

- 8. Prove that if a > 0 and  $b < \frac{a}{e^a 1}$ , then the delay differential equation x'(t) + ax(t) + bx([t]) = 0 has no oscillatory solution
- 9. Answer any THREE questions of the following
- a) Find the eigen values and eigen functions of  $x'' + \lambda x = 0, 0 \le t \le \pi$  using  $x(0) = x(\pi) = 0$
- b) Prove that if f(t,x) is defined on [a,b] and  $p = \frac{K(b-a)^2}{8} < 1$  with |f(t,x)-f(t,y)| < K|x-y|, then prove  $||x_{m+1}-x_m|| < p^m ||x_1-x_0||, m=1,2,...$  where  $||x|| = \sup_{a \le t \le b} |x(t)|$  using induction.
- c) Check the oscillations or non oscillations of  $x'' + e'x = 0, t \ge 0$
- d) What is fixed point technique and give an example.
- e) Verify  $y(t) = e^{-t}$  is a solution of  $y'(t) + \frac{1}{e}y(t-1) = 0$

Dr. T. HYMAYATAI

Dr. T. HYMAYATAI

Dr. T. HYMAYA G G G Mathematics

Acined Mathematics & Mathematics & Mathematics

Acined Mathematics & Ma